On Sept. 6, a new satellite left Earth to tell us about the motions of hot plasma flows in the universe.
Launched from Tanegashima Space Center in Japan, the X-Ray Imaging and Spectroscopy Mission (XRISM) satellite will detect X-ray wavelengths with unprecedented precision to peer into the hearts of galaxy clusters, reveal the workings of black holes and supernovae, as well as to tell us about the elemental makeup of the universe.
XRISM, pronounced “crism,” is a collaborative mission between the Japan Aerospace Exploration Agency (JAXA) and NASA, with participation by the European Space Agency.
Unlike existing X-ray telescopes, XRISM will be able to distinguish different colors of X-ray light, unlocking an extraordinary amount of information for scientists. It carries a new type of instrument that detects X-rays through tiny temperature shifts. It will be able to identify what chemical elements are present in the object it’s looking at—like iron, nickel, oxygen, or silicon—as well as their abundances. XRISM will also be able to read the velocities of gas motions.
“With XRISM, we will have a whole new view of the hot and energetic universe,” said University of Chicago astrophysicist Irina Zhuravleva, who is a NASA participating scientist for the project and a chair of the diffuse extragalactic science team within the collaboration. “We will observe stellar explosions, interactions of black holes with their host galaxies, and violent mergers of galaxy clusters in unprecedented details, but most exciting—the unexpected discoveries that always accompany new missions.”