The term “microbiome” is shorthand for the vast and still largely unexplored worlds of bacteria, viruses, fungi and other microorganisms that inhabit every corner of the planet. Bacteria form tiny ecosystems side by side with our own cells on our skin, in our mouths and along our airways and digestive tracts, as well as on all the surfaces we interact with—including our homes, workplaces, and hospitals, and the air, water, and soil.
These microbes are so impactful that some researchers consider them to be a separate organ, which shapes our metabolism, susceptibility to allergic and inflammatory diseases, and even responses to medical treatments. But scientists at the University of Chicago and other institutions around the world are just beginning to fully understand the role that bacteria play in our health.
Jump to a section:
- What is a microbiome?
- Why is the gut microbiome so important?
- How does the gut microbiome impact human health?
- How does the gut microbiome affect allergies?
- What other aspects of health are related to the microbiome?
- How does the environment affect the microbiome?
- Can you use the microbiome to treat disease?
What is a microbiome?
In 1675, Dutch haberdasher Antonie van Leeuwenhoek peered through a microscopic lens at some lake water and saw that it was teeming with life. Along with tufts of green algae, he saw thousands of tiny creatures he dubbed “animalcules.”
Centuries later, we now know that Leeuwenhoek’s animalcules inhabit every surface, nook and cranny of the planet. The term “microbiome” was coined to describe the collective community of bacteria, viruses, fungi and other microbes that colonize a particular space or ecosystem—for example, a microbiome of the soil, or a microbiome of a body of water. Indoor spaces like homes, offices and hospitals also have distinct microbiomes, as do all the surfaces and objects within. And most multicellular life forms have their own microbiome—a collection of microbes that are co-dependent, adapting to and taking advantage of the conditions presented by the host. Microbiomes can have a profound impact on the host’s biology and health.
Scientists at the University of Chicago and other institutions around the world are working to understand and catalog the microbiome, and to apply these insights to interventions and biotherapeutics to maintain health and to prevent and treat disease.
Why is the gut microbiome so important?
The human body has several distinct microbiomes—on the skin, in the mouth and in our airways—but the most consequential one for health is in the digestive system, commonly called the gut microbiome. The millions of microbes in the large intestine constantly exchange chemical signals with the body’s cells and help digest nutrients. These bacteria form a mutualistic or symbiotic relationship with the body and contribute to the normal functioning of the digestive system and other bodily organs and systems, so much so that some researchers see the gut microbiome as its own distinct organ.
This microbiome relies on a careful balance of certain types of bacteria that provide the services the body needs. Sometimes, one type of bacteria is found lacking or another type becomes more abundant than others, which can throw the system out of whack. This is called dysbiosis, which can lead to several health problems.
How does the gut microbiome impact human health?
In the 1980s, UChicago alum Jeffrey Gordon, MD’73, a gastroenterology researcher working at Washington University School of Medicine in St. Louis, began studying the gut microbiome to understand this nuanced relationship between microbes and their hosts. Gordon and his team were studying intestinal development, exploring the chemical signals that cells exchange with each other.
In one groundbreaking experiment, Gordon’s group transplanted gut microbes from both genetically obese mice and lean mice into a group of germ-free mice, which were specially raised to have no microbes. Despite all the mice eating the same diet, the mice who received microbes from obese mice gained more weight. At the same time, Gordon and his colleagues also showed how the gut microbiome of obese humans changed as they consumed low-calorie diets and lost weight. Gordon became known as “the Father of the Microbiome” for this work, which renewed interest in the links between the gut microbiome and human health.