On a chilly day in the fall of 2020, Scott Imbrie’s joyful voice preceded his entrance into the seventh-floor lobby of the Center for Care and Discovery, the University of Chicago Medicine’s flagship hospital located in Hyde Park. He greeted a team of neuroscientists and doctors and dutifully adjusted his face mask before beginning a simple neurological exam.
As Imbrie walked, a distinct sway hinted at why he was there, yet belied what he was once told: that he would never be able to walk or use his arms again.
After his exam, as he settled into a chair and put on a fresh mask—this one covered in the logos of his favorite Chicago sports teams—Imbrie began to share his story.
“I’m doing a lot of things in life that they told me I can never do,” he said. “I broke my neck in 1985, and I was told I was going to be a quadriplegic when I woke up. When they told me that, I knew it wasn’t going to be that way.”
Imbrie was 19 when a car accident damaged his spinal cord and left him paralyzed from the neck down. Though his doctors said it was unlikely, over months of rehabilitation, he relearned how to walk. Over the years, Imbrie also developed compensation strategies to regain very limited use of his arms and hands. Now, he’s pushing the envelope of medical possibility yet again—this time as a subject in a unique research trial that tests the use of neuroprosthetic devices to allow him to sense and manipulate a virtual hand and, eventually, a robotic prosthetic.
In October 2020, Imbrie became the first patient in Chicago and just the fourth person in an ongoing multisite study to undergo the delicate surgical procedure of implanting specialized electrodes into his brain. These electrodes receive neuronal signals from his motor cortex, allowing him to control and manipulate an arm in a virtual reality environment. They also send sensory feedback to his brain, allowing him to experience touch sensations on his hand—so that he can “feel” pressure and vibration.
Ultimately, the UChicago Medicine team plans to connect the system to a robotic prosthetic hand so that Imbrie can use the device in the real world. Refining this research and developing new advanced neuroprosthetic devices will provide new freedom for people who are paralyzed or who are missing a limb.
The study is an expansion of ongoing research conducted at the University of Pittsburgh and UChicago in other paralyzed patients. Like something out of a sci-fi movie, the goal, the researchers say, is to develop technologies that can replace missing limbs or restore touch and movement for those who are paralyzed. Some of the masterminds behind the work include Prof. Sliman Bensmaia an international expert on how the brain encodes and uses sensory information, and Prof. Nicholas Hatsopoulos, a leader in the field of the brain basis of motor control and learning.