Many of the genes involved in the natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists at the Marine Biological Laboratory and other institutions. This is consistent with the possibility that in the long term, the same or similar genes may be harnessed to improve spinal cord injury treatments.
“We found a large overlap with the hub of transcription factors that are driving regeneration in the mammalian peripheral nervous system,” said Jennifer Morgan, director of the MBL’s Eugene Bell Center for Regenerative Biology and Tissue Engineering, one of the authors of the study published this week in Nature Scientific Reports.
Lampreys are jawless, eel-like fish that shared a common ancestor with humans about 550 million years ago. This study arose from the observation that a lamprey can fully recover from a severed spinal cord without medication or other treatment.
“They can go from paralysis to full swimming behaviors in 10 to 12 weeks,” Morgan said.
“Scientists have known for many years that the lamprey achieves spontaneous recovery from spinal cord injury, but we have not known the molecular recipe that accompanies and supports this remarkable capacity,” said Ona Bloom of the Feinstein Institute for Medical Research and the Zucker School of Medicine at Hofstra/Northwell, a former MBL Whitman Center fellow who collaborated on the project.
“In this study, we have determined all the genes that change during the course of recovery,” Bloom said, “and now that we have that information, we can use it to test if specific pathways are actually essential to the process.”