However, because most of the energy is in the microwave part of the spectrum, to observe it we need to use special detectors at observatories in high and dry locations. The South Pole Station is better than anyplace else on Earth for this: it is located atop a two-mile thick ice sheet, and the extremely low temperatures in Antarctica mean there is almost no atmospheric water vapor.
“Built with cutting-edge detector technology, this new camera will significantly advance the search for the signature of early cosmic inflation in the cosmic microwave background and allow us to make inroads into other fundamental mysteries of the universe, including the masses of neutrinos and the nature of dark energy,” said Kathy Turner of the Department of Energy’s Office of Science.
Scientists are hoping to plumb this data for information on a number of physical processes and even new particles. “The cosmic microwave background is a remarkably rich source for science,” Benson said. “The third-generation camera survey can give us clues on everything from dark energy to the physics of the Big Bang to locating the most massive clusters of galaxies in the universe.”
The details of this “baby picture” of the cosmos will allow scientists to better understand the different kinds of matter and energy that make up our universe, such as neutrinos and dark energy. They may even find evidence of the gravitational waves from the beginning of the universe, regarded by many as the “smoking gun” for the theory of inflation.
It also serves as a rich astronomical survey; one of the things they’ll be looking for are some of the first massive galaxies in the universe. These massive galaxies are increasingly of interest to astronomers as “star farms,” forming the first stars in the universe, and since they are nearly invisible to typical optical telescopes, the South Pole Telescope is perhaps the most efficient way to find them.
‘Nothing that comes out of a box’
The South Pole Telescope collaboration has operated the telescope since its construction in 2007. Grants from multiple sources—the National Science Foundation, the U.S. Department of Energy and the Kavli and Moore foundations—supported a second-generation polarization-sensitive camera. The latest third-generation focal plane contains ten times as many detectors as the previous experiment, requiring new ideas and solutions in materials and nanoscience.
“From a technology perspective, there is virtually nothing that comes ‘out of a box,’” said Clarence Chang, an assistant professor at UChicago and physicist at Argonne involved with the experiment.
For the South Pole Telescope, scientists needed equipment far more sensitive than anything made commercially. They had to develop their own detectors, which use special materials for sensing tiny changes in temperature when they absorb light. These custom detectors were developed and manufactured from scratch in ultra-clean rooms at Argonne National Laboratory.