On the morning of Aug. 17, 2017, after traveling for more than a hundred million years, the aftershocks from a massive collision in a galaxy far, far away finally reached Earth.
These ripples in the fabric of spacetime, called gravitational waves, tripped alarms at two ultra-sensitive detectors called LIGO, sending texts flying and scientists scrambling. One of the scientists was Prof. Daniel Holz at the University of Chicago. The discovery had provided him the information he needed to make a groundbreaking new measurement of one of the most important numbers in astrophysics: the Hubble constant, which is the rate at which the universe is expanding.
The Hubble constant holds the answers to big questions about the universe, like its size, age and history, but the two main ways to determine its value have produced significantly different results. Now there was a third way, which could resolve one of the most pressing questions in astronomy—or it could solidify the creeping suspicion, held by many in the field, that there is something substantial missing from our model of the universe.
“In a flash, we had a brand-new, completely independent way to make a measurement of one of the most profound quantities in physics,” said Holz. “That day I’ll remember all my life.”
As LIGO and its European counterpart VIRGO turn back on on April 1, Holz and other scientists are preparing for more data that could shed light on some of the universe's biggest questions.
Universal questions
We’ve known the universe is expanding for a long time (ever since eminent astronomer and UChicago alum Edwin Hubble made the first measurement of the expansion in 1929, in fact) but in 1998, scientists were stunned to discover that the rate of expansion is not slowing as the universe ages, but actually accelerating over time. In the following decades, as they tried to precisely determine the rate, it has become apparent that different methods for measuring the rate produce different answers.
One of the two methods measures the brightness of supernovae–exploding stars– in distant galaxies; the other looks at tiny fluctuations in the cosmic microwave background, the faint light left over from the Big Bang. Scientists have been working for two decades to boost the accuracy and precision for each measurement, and to rule out any effects which might be compromising the results; but the two values still stubbornly disagree by almost 10 percent.