But quantum’s quirks are what make it interesting. While not being able to read your information without screwing everything up is frustrating, it makes it perfect for designing a hack-proof communication system: If someone eavesdrops, the information will be destroyed.
Similarly, quantum systems’ tendency to respond to the least disturbances make them perfect sensors. “With quantum sensors, you are dealing with the absolute smallest amounts of energy, so you can sense things that other technologies cannot,” Cleland said.
They could detect something as small as tiny shifts in gravity that indicate the ground is denser in one area than another—which could detect untapped pockets of oil or minerals or get us closer to predicting earthquakes. They could even potentially detect dark matter.
Medicine is interested, too. Untangling the structure of proteins and cellular structures is central to making better pharmaceuticals, and it’s thought that quantum sensors could do this much faster and with better sensitivity. It could even one day peer inside the workings of our own cells. “Think of the possibilities for advancing biology and medicine if we can place nano-scale quantum sensors into living cells and observe their behavior in real time,” Awschalom said.
Yet the applications will only come once scientists understand the underlying principles of how to properly control quantum systems. First they need to understand how to prevent magnetic fields from knocking such systems out quickly; how to make bigger systems hold together; and how to interface them with existing technology.
“These are important questions for university scientists and engineers, because this underlying physics will ultimately determine the limits of quantum technologies,” Awschalom said. “To answer these questions, we need groups of computer scientists, engineers and physicists working together.”
And as that science grows into full-fledged technology, the world will need a new generation of quantum engineers, Awschalom said. Another $1.5 million from NSF will fund an innovative program, headed by Awschalom and Harvard’s Evelyn Hu, that pairs graduate students to tackle specific problems along with mentors from both academia and industry.
The field is exciting to work in, IME researchers said, especially for scientists who’ve seen the field evolving before their eyes. “When I was in grad school, this was all pretty pictures in textbooks, that you knew you couldn’t apply to anything in the real world,” Cleland said. “But the barriers started falling away, and now we’re not only actually doing those textbook examples, but going well beyond them.”