That first chain reaction’s complex legacy includes the peaceful uses of nuclear energy, the terrible power of nuclear weapons, and a new era of other scientific and technological advances.
After the war, UChicago founded the Institute for Nuclear Studies and the Institute for the Study of Metals. Later renamed the Enrico Fermi and the James Franck institutes, they enabled the University to retain much of the intellectual talent that had assembled on campus to work on the Manhattan Project. Another outgrowth of the project was Argonne National Laboratory, which conducts basic and applied research in many major scientific disciplines. Today, Argonne is a partner in the Institute for Molecular Engineering, which is bringing leading scientists and engineers to a groundbreaking initiative to conduct research at the molecular level.
“What we see here is a legacy of connection that we’re still building upon, a way to try to redefine engineering for the 21st century," said Provost Thomas Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics.
Building the pile
Though Fermi’s team was engaged in the biggest secret project of World War II, they discussed technical issues under a tree on the Main Quad, which they deemed safe from eavesdroppers. In the middle of the day on which they produced the first chain reaction, they took a customary lunch break at Hutchinson Commons.
“Don’t imagine that they were able to achieve a chain reaction on the first try,” says Roger Hildebrand, the Samuel K. Allison Distinguished Service Professor Emeritus in Physics. “They built and rebuilt stacks of uranium, uranium oxide, and graphite 30 times before they were ready for the final test.”
Chicago Pile Number One, or CP-1 for short, consisted of 40,000 graphite blocks that enclosed 19,000 pieces of uranium metal and uranium oxide fuel. The scientists of what was then called the Metallurgical Laboratory, or “Met Lab,” had arranged the graphite in layers within a 24-foot-square wooden framework.
Hildebrand had started his work on the Manhattan Project as an undergraduate chemistry major at the University of California, Berkeley. He worked for Nobel laureate Ernest Lawrence, namesake of the Lawrence Livermore and Lawrence Berkeley national laboratories, using Berkeley’s cyclotron accelerator to transmute uranium into plutonium, an element believed to have potential for driving a chain reaction.
The samples irradiated in Berkeley and another lab in St. Louis ended up in the James Herbert Jones Laboratory, just one block south of old Stagg Field. There, in Jones Lab’s Room 405, future Nobel laureate Glenn Seaborg achieved an important steppingstone on the way to the Atomic Age. He weighed the first visible, pinhead-sized sample of plutonium. It wasn’t much, but enough to measure its chemical and metallurgical properties.
The potential hazards of nuclear power were evident even in those early days, but the war effort took priority. The Japanese had bombed Pearl Harbor on Dec. 7, 1941. Germany and Italy declared war on the United States four days later.
“They were advancing everywhere, they were conquering everywhere, and they were working on an atomic bomb,” Hildebrand said of the Germans. “The consequence of losing a nuclear race was the preoccupation of everyone who knew that a nuclear bomb might be possible.”