Jupiter’s got no sway. The biggest planet in the solar system has no tilt as it moves, so its poles have never been visible from Earth.
But in the past two years, with NASA’s Juno spacecraft, scientists have gotten a good look at the top and bottom of the planet for the first time. What they found astounded them: bizarre geometric arrangements of storms, each arrayed around one cyclone over the north and south poles—unlike any storm formation seen in the universe.
The study, authored by scientists from an international group of institutions including the University of Chicago, is published in March 8’s Nature as part of a set of four papers dedicated to new observations from the Juno spacecraft.
Juno launched in 2011 with the ambitious mission of finally seeing beneath the dense clouds covering Jupiter. On July 4, 2016, it finally reached the planet’s orbit. Since then it’s been orbiting the planet, taking pictures and measuring the planet’s profile in infrared, microwave, ultraviolet, gravity and magnetism—and answering questions scientists have had about Jupiter for decades.
One of these was the question of what lay at its elusive poles. When scientists got the first images, they were stunned. At the north pole, eight storms surrounded one storm at the center. At the south pole, it was the same arrangement, only with five storms. But the numbers stayed oddly constant; the storms weren’t drifting and merging, as our current understanding of the science suggested they should.
“They are extraordinarily stable arrangements of such chaotic elements,” said Morgan O’Neill, a University of Chicago postdoctoral scholar and a co-author on the paper. “We’d never seen anything like it.”