How a ‘doctor for batteries’ is creating innovative technology to tackle climate change

UChicago, Argonne scientist Y. Shirley Meng focuses on energy storage that supports a sustainable future

Editor’s note: This story is part of ‘Meet a UChicagoan,’ a regular series focusing on the people who make UChicago a distinct intellectual community. Read about the others here.

Even as a young girl, Prof. Y. Shirley Meng understood the importance of both sustainability and scientific research. Her father, a civil engineer who built hydroelectric dams in her native Hangzhou, China, read her stories of Nobel laureates and encouraged her to embrace cars and airplanes as well as dolls. 

As an undergraduate at Nanyang Technological University in Singapore, she pursued an internship with Boeing to learn more about the light, strong alloys used in airplane structures. When she didn’t get an internship, she was devastated. But that disappointment was a turning point — it led to her to pursue an internship with a professor studying superconducting oxide materials. 

That experience ultimately set her on the path to becoming a professor and then a global expert in energy storage research. Now a faculty member at the University of Chicago’s Pritzker School of Molecular Engineering and the chief scientist for the Argonne Collaborative Center for Energy Storage Science, Meng has her sights set on creating new technologies that support a sustainable future. 

“We are ready to build a dream team to tackle some of the most difficult energy storage problems in the world,” said Meng. 

Building better batteries 

Energy storage wasn’t always a national or societal priority. After Meng received her PhD in materials science through the Singapore-MIT Alliance for Research and Technology program, she joined MIT as a postdoctoral fellow, with the goal of becoming an academic. At the time, in the early 2000s, energy research was primarily focused on hydrogen; battery research wasn’t mainstream. 

But Meng’s vision was clear: batteries would ultimately have a huge impact on society, and within the industry, many technical problems still needed solutions. In 2001, she began her PhD thesis research into cobalt-free lithium-ion batteries, designing cathode materials through a unique combination of advanced computation and experiments. 

As she moved on to faculty positions at the University of Florida and the University of California San Diego, her research shifted into quantitative study of battery degradation and diagnosis. “I call myself a doctor for batteries,” she said. 

Meng used x-ray, neutron, and electron beams to study batteries either after failure or under extreme operation conditions and conducted quantitative analyses of how they operated and degraded. When she found that the cathode materials in batteries often degrade at their surface 1-10nm, she proposed strategies to protect the surfaces, including both new coatings and new electrolyte development — the electron microscopy tools she mastered was proven to be useful to evaluate the effectiveness of those strategies. 

That materials work led to the development of a new class of electrolyte materials called liquified gas electrolytes that allows batteries to work at temperatures as cold as -80 degrees Celsius. This type of battery could lead to better batteries for aviation, space exploration, and even for severely cold climates on Earth. 

More recently, Meng has been using cryogenic transmission electron microscopes — a tool generally used in biomedical research — to study materials for energy storage. Once again, the advanced diagnosis revealed unknowns to reactive metal anodes such as pure lithium metal — accelerating the commercialization of lithium metal batteries that weigh lighter, are more compact, and are more powerful. 

Her work has led to several patents and three startup companies, and a large network of alumni who are innovating across academia and industries. 

“Training PhD students is very rewarding, because if your students do well, that pays off in the long term,” she said. “I always ask my students, ‘What is your dream?’ For some of them, their dream is to run a company, and they have helped spin out research from the lab. My vision now is to have a bigger platform to do more, which is why I joined the University of Chicago and Argonne.” 

Creating a robust and resilient ecosystem 

Equipped with the resources and collaborators of both Argonne and UChicago, Meng hopes to tackle climate change with new energy storage options. Lithium, for example, is becoming a rare commodity, and as more vehicles turn electric, researchers will need new kinds of batteries to power transportation, as well as a plan for grid electrification. 

“In the next ten years, we will continue to decarbonize transportation sectors and really start making inroads for renewable energy everywhere in the world,” Meng said. “Batteries will be a major component of that. Our goal is to enable a robust and resilient ecosystem for energy storage, and that includes scientific research, workforce training, and product development.”

New battery technology also will play a big role in Meng’s vision of a future in which every household has a refrigerator that stores electrons from a renewable source — whether wind, solar, or geothermal — and uses those electrons to power their house as needed. 

Ultimately, Meng hopes to work across disciplines at UChicago, including colleagues at the Booth School of Business, to illuminate a path for businesses that shows that being “sustainable” makes good economic sense. 

“You can make a profit by being sustainable, and we here at the University of Chicago have the culture to define the success metrics of sustainability and to lead in this critical area,” Meng said. 

—Reprinted from an article published by the Pritzker School of Molecular Engineering