Chicago blues and the science in sound

Everyone knows about visualizing data, but few have heard of sonifying data. Nevertheless, sound has great potential for organizing, interpreting and sharing scientific knowledge. Sound can also be a powerful tool to learn more about culture and the natural world.

Citing microbial bebop, Chicago blues, cosmic sound and a string quartet inspired by DNA’s double helix, panelists at a program called “Science and Sound” on June 3 made a strong case for exploring and exploiting sound as a tool in scientific endeavors.

[view:story=block_1]

The occasion was the 11th in a series of joint speaker events for faculty at the University of Chicago as well as scientists, researchers and engineers at Argonne National Laboratory and Fermi National Accelerator Laboratory. It was held at Buddy Guy’s Legends, the “cathedral” of Chicago blues and the “perfect place to discuss how sound serves science, pervades our lives and influences our emotions,” said Donald Levy, vice president for Research and for National Laboratories at the University of Chicago.

Panelist Peter Larsen, assistant computational biologist at Argonne, explained how an algorithm he calls microbial bebop generates data into music by normalizing the data to a dynamic range of integer values and mapping those values to notes and chords. “I doubt that I’ll ever come up with a composition that will change my understanding of microbial ecology, but the very exercise of doing this has already accomplished that,” he said. “My job is to think of interesting ways to analyze big data…and microbial bebop has helped me find and understand better approaches to understanding data.”

Another panelist, however, decided not to transcribe data directly into music, realizing that such an approach would not create an effective, cohesive composition. In composing “Helix Spirals” for string quartet, Grammy-winning composer Augusta Read Thomas, University Professor of Composition, approached the project metaphorically. She found inspiration in science and showed how well music can present an abstract and intellectual expression of nature.

“Helix Spirals” celebrates the Meselson-Stahl DNA replication experiment of 1958. The first movement, Thomas explained, portrays loci, that is, specific but “flickering” locations of genes or DNA sequences on a chromosome. The second movement portrays DNA replication with different instruments representing different strands. And the third conveys the beauty, richness and force of life.

“Nature is a great teacher of transformation, connections and, for me, music composition,” said Thomas, who is now working on a piece about protein folding.

Indeed, music and sound is a “metaphor for the regularity of nature and even the movement of the heavens,” said moderator Sidney Nagel, the Stein-Freiler Distinguished Service Professor in Physics.

Listening to learn

Instead of using science to generate or inspire music, panelist Michael Dietler, professor in anthropology, works the other way around. He listens to music to better understand cultures. “Music is a socially patterned, cultural phenomenon, and the blues has a lot to teach us about Chicago’s African American culture,” he said. Noting that many students spend four years on campus without exploring what Chicago has to offer, Dietler created a course on the history of the blues, which he called an enormously influential form of music.

“It’s one thing to listen to the blues and quite another to understand how it evolved, impacts people, influences culture and continues to develop today,” Dietler said. The difference is akin, he added, to the difference between enjoying the sound of French and actually understanding what is being said, idiomatically, historically and culturally.

Meanwhile, one of the best ways to learn about the universe is to listen to it. “Just like you can learn a lot about an instrument by studying the frequency of the sound it makes, you can learn a lot about the content of the universe by studying the Cosmic Microwave Background,” said Bradford Benson, associate scientist and Wilson fellow at Fermilab and assistant professor in astronomy and astrophysics at the University of Chicago.

Cosmic Microwave Background is radiation left over from the Big Bang. “As we map the sky, we can detect sound waves from the early history of the universe, more than 13 billion years ago,” Benson said. “When we measure the Cosmic Microwave Background’s power spectrum—analogous to what you might do with a stereo amplifier—we find a remarkable harmonic structure,” Benson said.

Overall, the panelists agreed that sound and science go well together, whether it is to listen to the cosmos—and each other—or to utilize sound as a tool to understand data and present knowledge, directly or indirectly. For instance, although microbial bebop is not an effective way to share data, it is a great way to engage students in science, Larsen has found. But the day may come when sonified data and audible pie charts are as commonplace as visual maps.

“We have to learn how to create and interpret charts, Venn diagrams, and other visual presentations of data,” Dietler said. “Likewise, we could learn how to utilize sound and music more in science. We’re used to conducting many things visually, but there’s no reason why we couldn’t handle more things audibly.”

“Some of what we learn is communicated through sound, but there’s a big potential to tap sound in new ways to achieve much more,” Nagel concluded.